If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-21k+4=0
a = 5; b = -21; c = +4;
Δ = b2-4ac
Δ = -212-4·5·4
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-19}{2*5}=\frac{2}{10} =1/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+19}{2*5}=\frac{40}{10} =4 $
| 4v-2v=12 | | 3=g+13 | | 7x+26=110 | | 1/3c=2/3c | | 24=d-31 | | 18+6y=-24 | | 8+0.75x=10+0.50x | | 38x+53=180 | | -10v-2=-7v-4v-7 | | x+x+67+x-16=180 | | 3x+24=6x+-9 | | x^2-3^2=0 | | -6p-9=-9p | | 1/3y+5=-15 | | 6s=-10+7s | | 2x+132=18- | | -2+8y=-5+7y | | 1-c=-10c=10 | | 1/2n+9=15 | | 2j=j+1 | | (36-x^2)/(3x^2-18x)=0 | | -7/4(-8/7)x-3/4=20(-8/7) | | 4z=2z+8 | | 59x+31x=180 | | 31x+59=180 | | 5m=10+4m | | 6y=1=4y=9 | | q+q+77+q+8=180 | | -8(3x+2)-1=5+2(x-2) | | 3r=5(r–20) | | (4x)+92=180 | | 8s=-4+7s |